

LONE TREE OVERPASS

SUSTAINABILITY and INTERSECTION REFINEMENTS January 25, 2022

Project Updates

- Approach
- Sustainability

Intersection Refinements

Project Updates

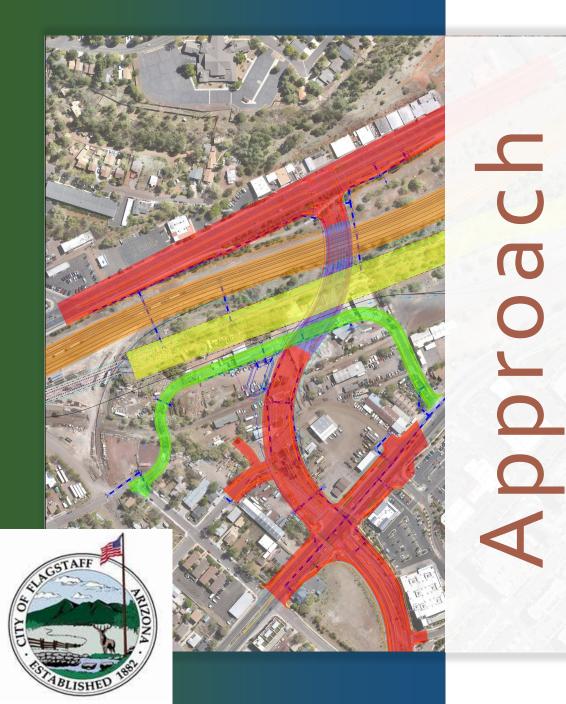
Project Updates

CITY OF FLAGSTAF

$\diamond\,$ Coordination with Beautification, Arts & Sciences

- » Staff meeting held on December 9th, 2021
- » Presentation to the BPAC commission occurred on January 10
- » Planning Outreach for a Community Forum to seek input early 2022

$\diamond\,$ Pedestrian and Bicycle Advisory Committees


» City staff discussed project and permissive / controlled rights at intersections

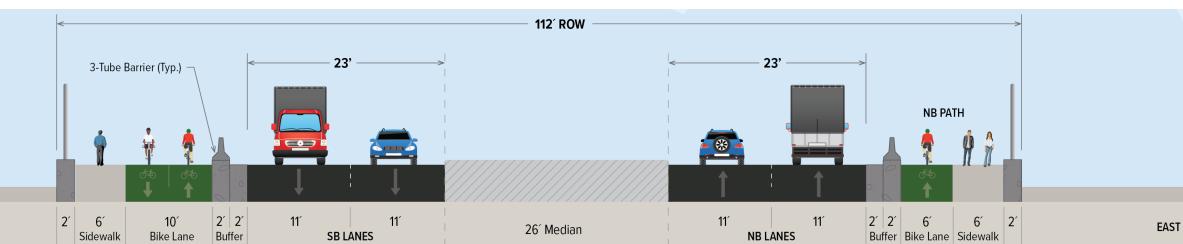
$\diamond\,$ Coordination with BNSF and USACE regarding the RDF Flood Control Project

» Meeting held on December 8th, 2021

Additional City staff and Commission Coordination Meetings

- » Meeting held with Sustainability staff on December 8th, 2021
- » Meeting held with Transportation/Pedestrian/Bicycle/Inclusion and Adaptive Living Commissions and Committees on January 13th, 2022

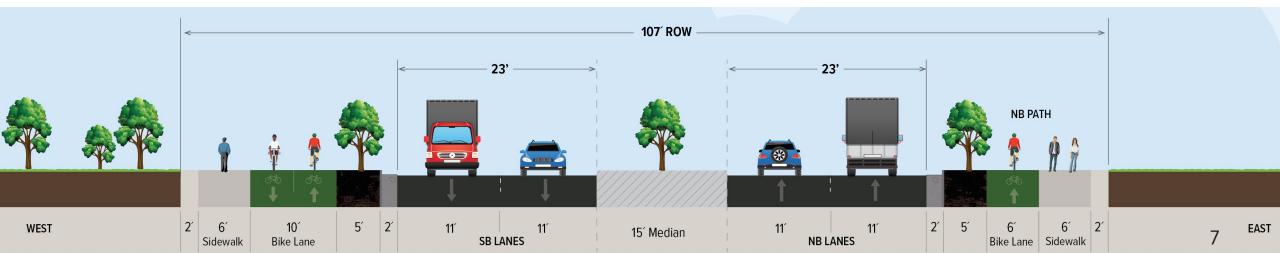
- Team Experience
- Project Overview
- Approach to Analysis
 - Respond to Feedback
 - Provide Data for Evaluation


Project Summary - What this Project Provides

- \diamond 1.8 Miles of new Bicycle Lane Miles (Off-Roadway)
- \diamond 1.2 Miles of new Pedestrian Sidewalk
- \diamond o.6 Miles of new FUTS connecting Route 66 to Sawmill
 - » Designed for E-Bikes, Class 2

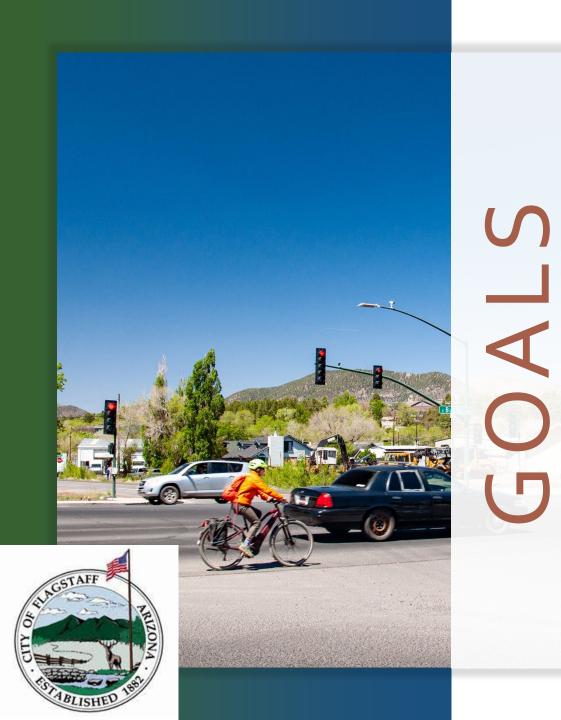
CITY OF FLAGSTAFF

WEST


Protected bike and pedestrian facilities along full length of Lone Tree Road

Project Summary - What this Project Provides

- \diamond 0.3 Miles of new roadway between Butler Avenue and Route 66
- \diamond 0.3 Miles of roadway widening between Butler Avenue and Sawmill Road
- \diamond 1.8 new Roadway Lane Miles


- \diamond 1 New Intersection at Lone Tree and Route 66
- Avenue
 Avenue
 Sawmill Road, and Franklin
 Avenue
 Avenue

Sustainability

Project approach to Vehicle Miles Traveled (VMT)

 Approach to VMT in Public Works and Transportation Infrastructure

 Alternative look using greenhouse gases

Sustainability - VMT Goals

\diamond City of Flagstaff Goal

- » Reduce Vehicle Miles Traveled (VMT) to 2019 VMT Levels
- » VMT is measured/analyzed using regional network traffic models

\diamond Regional tools available for measuring VMT

- » Project used MetroPlan's Regional Model
 - ☑ Developed before formal adoption of the Sustainability Goals
- » Scenarios
 - ✓ 2019 No-Build Scenario (36,004 dwelling units, 12,093 commerce(ksf))
 - ✓ 2026 Build / No-Build Scenario | 37,768 dwelling units | 12,630 commerce(ksf) (~0.7%/yr)
 - ✓ 2040 Build / No-Build Scenario | 46,556 dwelling units | 16,357 commerce(ksf) (~1.3%/yr)

Sustainability - Modeling Approach and Results

MetroPlan Regional Model Updates

CITY OF FLAGSTAFF

- » Incorporated Land-Use Changes (Hospital, Zoning, Etc.)
- » Incorporated Identified Funded Capital Infrastructure into the 2040 model
- » Evaluated a 2-Lane and 4-Lane Lone Tree Overpass Scenario for Greenhouse Gas (GHG) analysis

A Regional VMT Results (Given as <u>per day</u>)

- » No significant change with Build Scenario (Lone Tree Overpass)
- » 2040 Increases due to regional growth projections (standard approach)

Year	No-Build VMT		Build V	ΜT
2019	2,560,198			
2026	2,604,834	+ 2%	2,603,984	+ 2%
2040	3,423,404	+ 34%	3,434,924	+ 34%

Sustainability - Induced Demand

Induced Demand

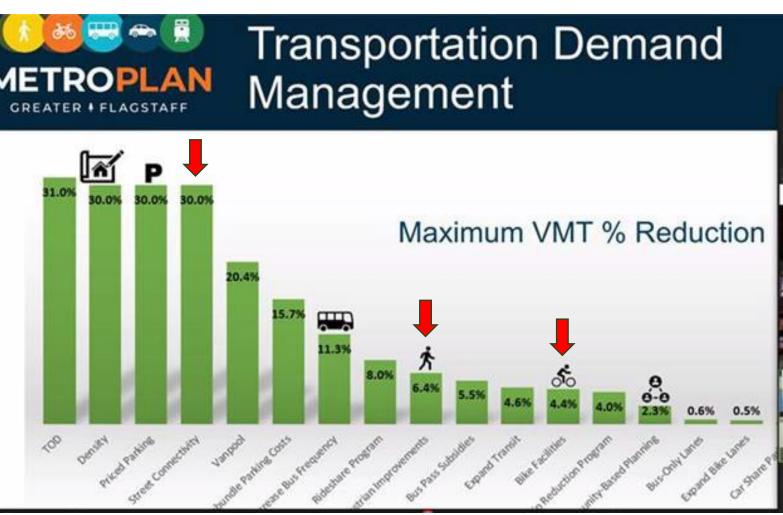
CITY OF FLAGSTAFI

- » Induced Demand is increase in travel based on additional capacity / improved network
- » RMI "SHIFT" Calculator based on new roadway capacity
- » The City is working on their own calculator, not yet available
- » LTO Project adds 1.8 lane-miles
- » Increase of 2,800 5,500 VMT/day
 - ✓ ~0.2% increase in network modeled
 - Less than the 2026 Build year modeled

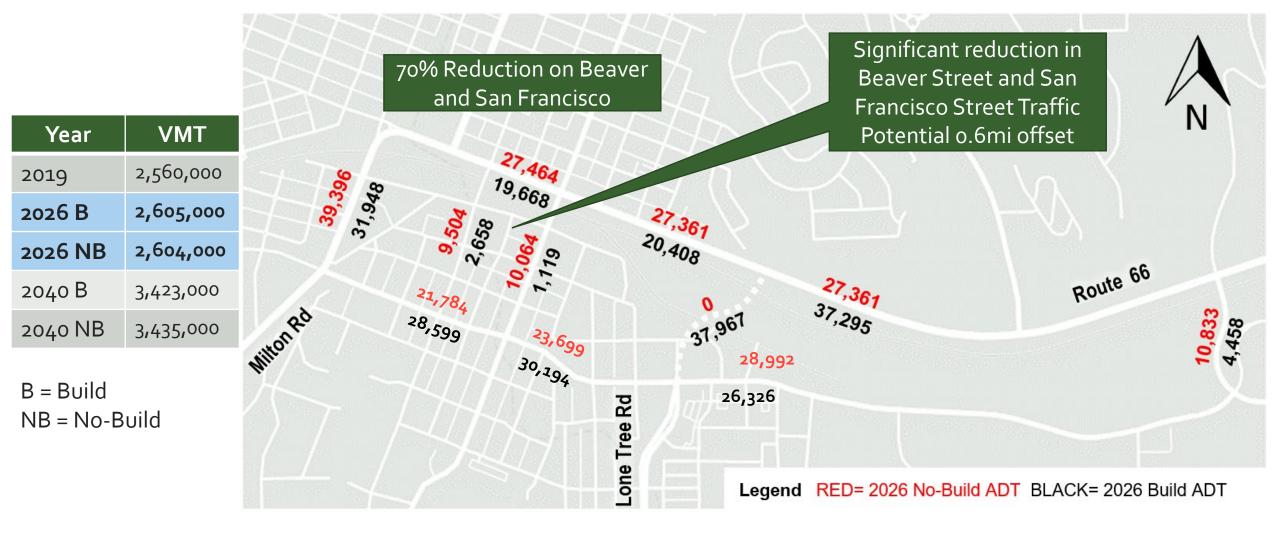
Home FAO SHIFT Calculator State Highway Induced Frequency of Travel The SHIFT calculator enables users to estimate long-run (i.e., after 5 to 10 years) induced vehicle miles traveled (VMT) and emissions impacts from capacity expansions of large roadways in Metropolitan Statistical Areas (MSAs) or urbanized counties, based on existing lane mileage and vehicle miles traveled data from the Federal Highway Administration (FHWA). Methodology 1 to 2 million additional VMT/year (Vehicle Miles Travelled) Coconino County, Arizona currently has 675 lane miles of class 2 and 3 facilities on which ~629 million vehicle miles are travelled per year. A project adding **2 lane miles** would induce an additional **1 to 2 million** vehicle miles travelled per year. Under today's conditions, the annual emissions from this are the same as ~200 passenger cars and light trucks or ~79,000 gallons of gas.

CITY OF FLAGSTAFF

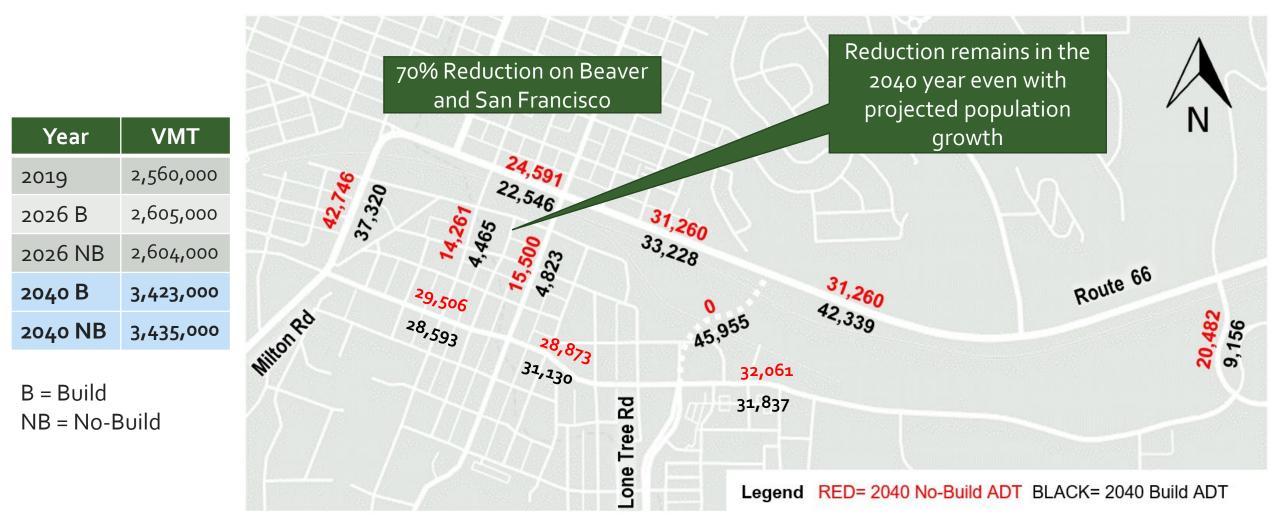
\diamond How can VMT be incorporated into Public Works


» Typically, VMT is a PLANNING level decision

- » Public Works projects involving roadway capacity balance new roadways with offsets elsewhere. For example, a new roadway is offset by:
 - ☑ Roadway lane reductions on other street networks
 - ☑ Increased Public Transportation
 - ☑ Carpool and Ride Share Programs
 - ☑ Increase Bicycle and Pedestrian Infrastructure (Reduce Vehicle Trips)
- » At a project level (after planning), it is difficult to reduce VMT impacts on a project.
- » We can still evaluate greenhouse gas impacts at the intersection and network level, a secondary component of the City's Carbon Neutrality Plan.


Sustainability - VMT Reductions

Options to reduce VMT Regionally


- » Increased transit (bus)
- » Increased FUTS connectivity / Pedestrian Improvements / Bike Facilities – PROJECT GOAL
- » Street Connectivity 🗸
- » Corridor Changes Elsewhere

Sustainability - VMT in Network Model

Sustainability - GHG Emissions

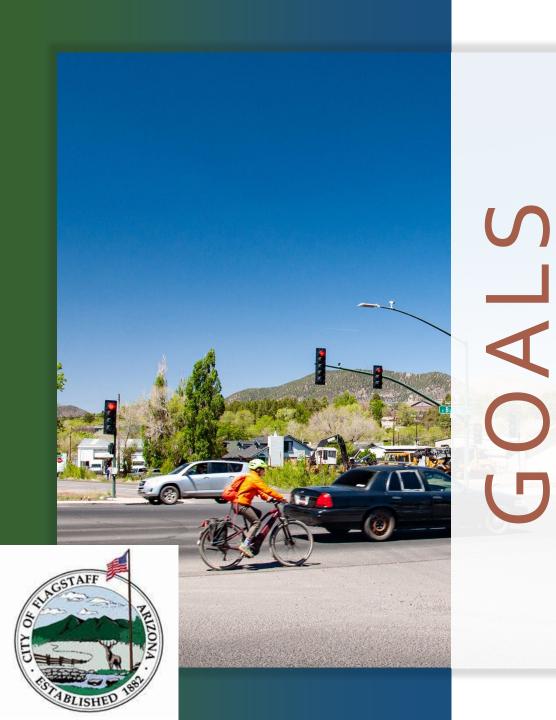
CITY OF FLAGSTAFF

\diamond Greenhouse Gas (GHG) Emissions Evaluation

- » Compared 2-Lane LTO and 4-Lane LTO options
- » Fuel consumption and emissions based on volume <u>and</u> congestion
- » Based on MetroPlan Regional Model outputs

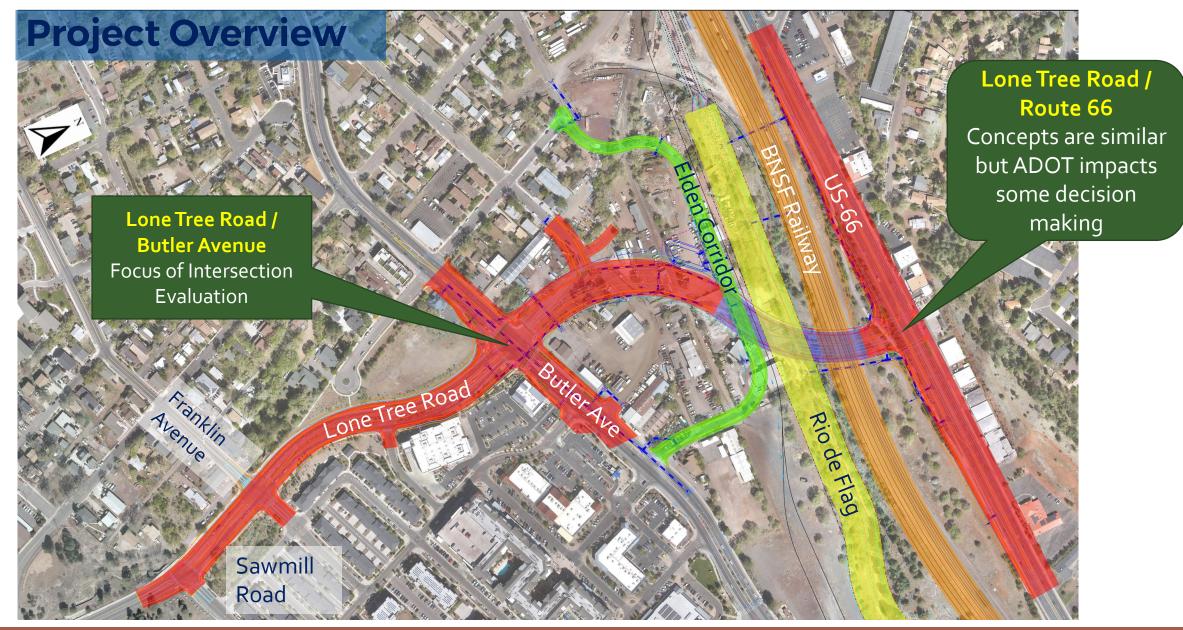
Estimated Yearly Savings – 2026 Build Year				
2026 Year	2-Lane LTO	4-Lane LTO	2-Lane LTO	4-Lane LTO
Fuel Used (Gallons)	122,100	285,900	43,100	206,900
CO2 Emissions (Tons)	1,100	2,600	390	1,860
				ed Demand ts Included

With continued VMT growth, savings diminish over time. Per models used, savings reverse with 4-Lane scenario by 2040 and with 2-Lane scenario by 2047


Sustainability - Takeaways

- Lone Tree Overpass project has a minimal impact on VMT compared to regional growth assumptions (0.2% vs 2% 2026 VMT growth)
- There are offsets that are difficult to quantify that reduce impacts and others that can be taken to further reduce VMT impacts
 - » Project provides FUTS connectivity, Pedestrian and Bike facilities
- 4-Lane Lone Tree Overpass project potentially reduces greenhouse gas emissions compared to no-build or 2-Lane scenarios even with a conservative Induced Demand assumption

Intersection Refinements and Analysis

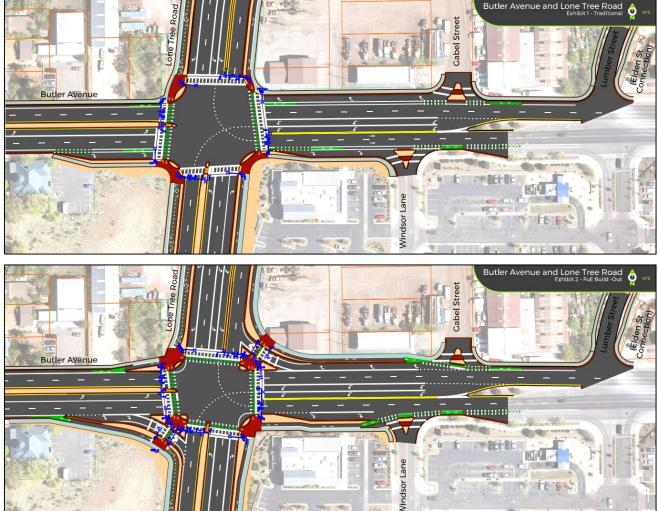

Review 4 refined intersection alternatives at Butler

 Identify Pedestrian/Cyclist User Impacts

Identify Driver Impacts

Identify Cost Impacts

LTO & Butler - Intersection Options


Typical Approach

- Two left-turn lanes (SB, WB)
- Channelized right-turn lanes (None)
- Separated bike lanes (LTO)
- Raised median (S, W)

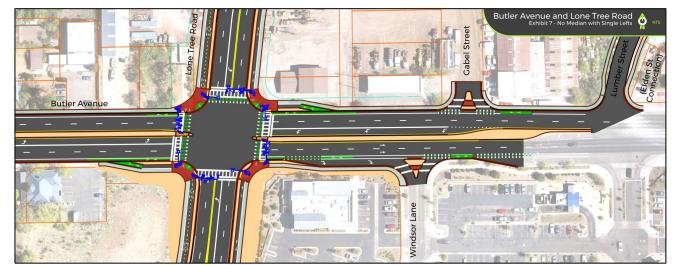
- Two left-turn lanes (SB, WB)
- Channelized right-turn (EB, WB)
- Separated bike lanes (LTO & Butler)
- Raised median (S, W)

LTO & Butler - Intersection Options

Single Left-Turn Lanes


- One left-turn lane (All)
- Channelized right-turn (EB, WB)
- Separated bike lanes (LTO & Butler)
- Raised median (All)

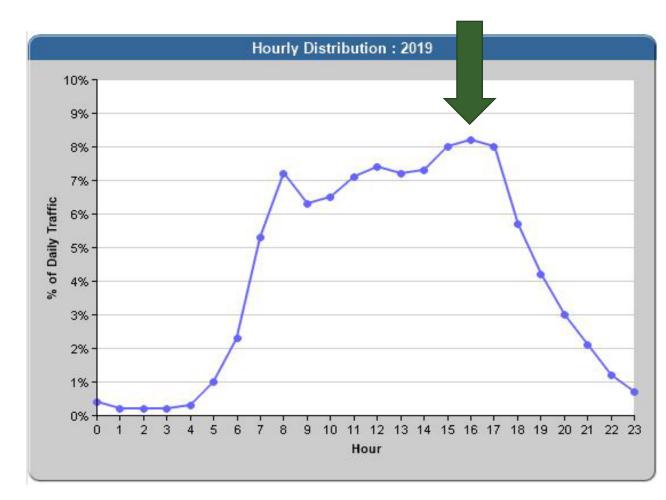
- Two left-turn lanes (SB, WB)
- Channelized right-turn (EB)
- Separated bike lanes (LTO)
- Raised median (S, W)



LTO & Butler - Intersection Options

5

Traditional Intersection


- Single left-turn lanes (All)
- Shared Through/Rights (All)
- Separated bike lanes (LTO)
- Raised median (E, W)

Modeling Approach – Peak Hour Analysis

Peak Hour is a Standard
 Modeling Approach

- Ensures functionality for worst hour on AVERAGE day
- Out worst hour of worst day of the year
- \diamond Approximately 8.1% of ADT
- Representative of 8%-15% increase over normal hourly traffic between 8am and 6pm

Approach to Multi-Modal Safety

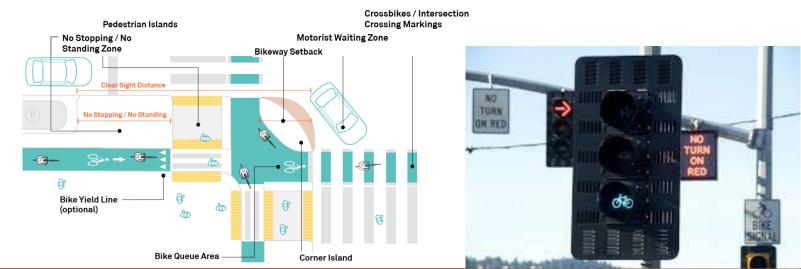
May 2019

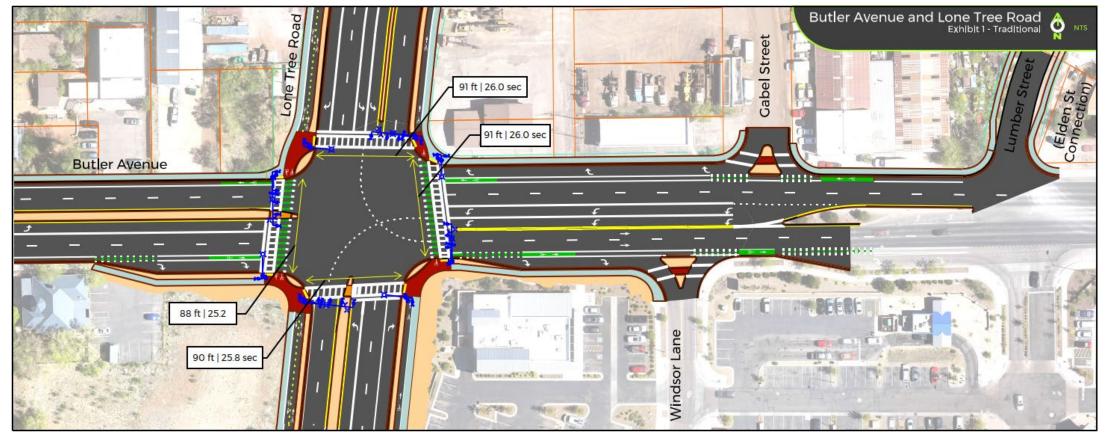
NACTO

CITY OF FLAGSTAFF

National Association of City Transportation Officials

Don't Give Up at the Intersection


Designing All Ages and Abilities Bicycle Crossings


 ACTO considered most current standard for "safe" intersection

 Geared towards designing for safety for all users and abilities

Off-System Bicycle Facilities follows ATMP

Vehicle Features

• Two left-turn lanes (SB, WB)

Bicycle Features

Pedestrian Features

- Separated bike lanes (LTO)
- Raised median (S, W)

• Channelized right-turn lanes (None)

LTO & Butler - Typical Approach | Looking NE

Facing West | EB Approach

Facing East | WB Approach

Walking Speed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
2.4 mph	East Leg	91	26.0	5.0
Riding Speed 12.4 mph	West Leg	88	25.2	4.8

Refuge Island only on Eastbound Approach. Protected Cyclist Crossing.

Facing South | NB Approach

Malling Crossed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
Walking Speed 2.4 mph	North Leg	91	26.0	5.0
Riding Speed 12.4 mph	South Leg	90	25.8	4.9

Refuge Island only on Northbound Approach. Cyclist Crossing on roadway or with pedestrians.

\diamond Design Feature

- » Pedestrian longest crossing distance 91 ft
- » Pedestrian longest crossing time 26.0 s
- » Bike longest crossing time 5.0 s
- » Available Green Time 33.7s (EB/WB Thru-PM)

	Ped /Bike Crossing	Distance (ft)	Ped Time (sec)	Min. Bike Time (sec)
	North Leg	91	26.0	5.0
	South Leg	90	25.8	4.9
	East Leg	91	26.0	5.0
4)	West Leg	88	25.2	4.8

Pedestrian crossing times are based on 3.5 ft/s | 2.4 mph

- » Per the Manual for Uniform Traffic Control
- » Assumes complete crossing during one single green phase
- » Older Pedestrians, 2.8 ft/sec.(FHWA) Longest Crossing time 32.5 sec

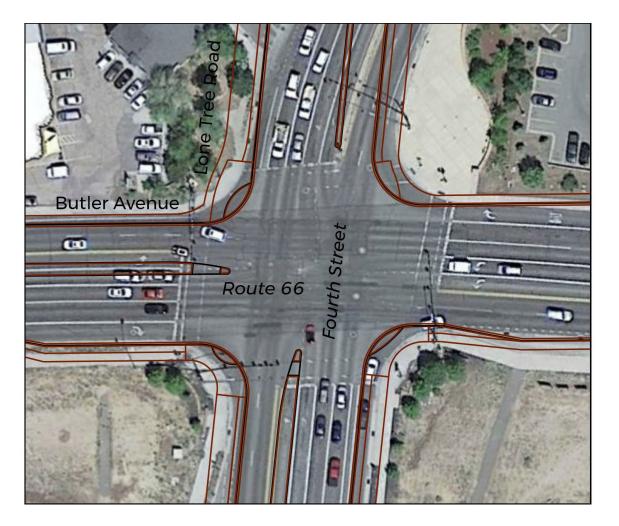
https://view.mylumion.com/?p=bjlavl98e9j4eceb

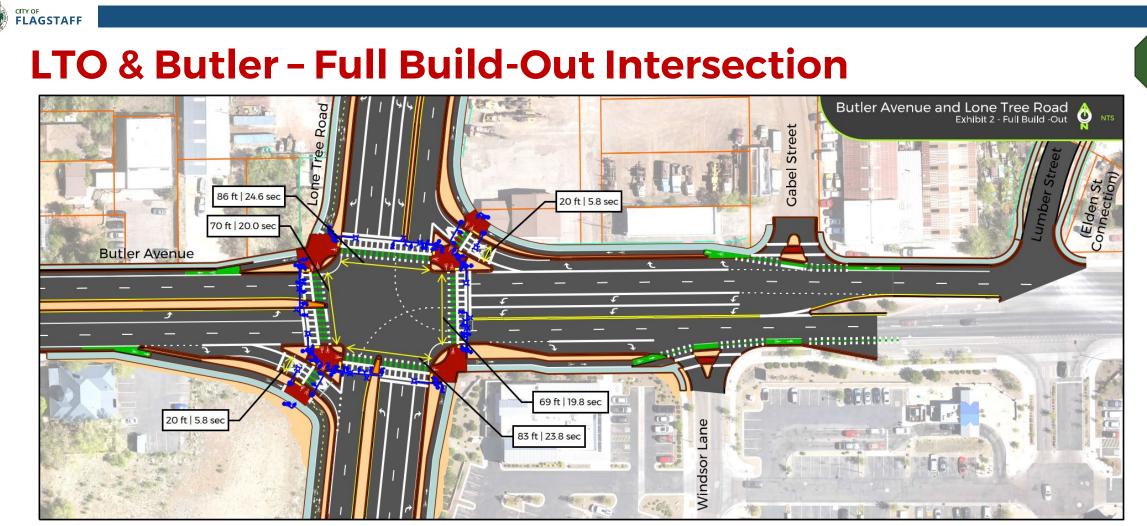
- » Overall Level of Service D
- » Average Vehicle Delay: 46.9 sec
- » Queuing: Longest queue 599 ft

Performance (2040 PM Peak)

- » Overall Level of Service E
- » Average Vehicle Delay: 70.7 sec
- » Queuing: Longest queue 772 ft

Year	Total Vehicle Delay (hours)	Fuel Used (gallons)
2026 (PM)	58	57.0
2040 (PM)	111	91.8


» Maximum Queues - 2026



- Comparison to Existing Intersection: Rte 66 & Fourth Street
 - » Smaller roadway footprint
 - » Shorter crossing distances
 - » LTO & Butler has median refuge on West and South legs

Vehicle Features

- Two left-turn lanes (SB, WB)
- Channelized right-turn lanes (SW, NE)

Bicycle Features

• Separated bike lanes (LTO)

and Butler at the intersection

Pedestrian Features

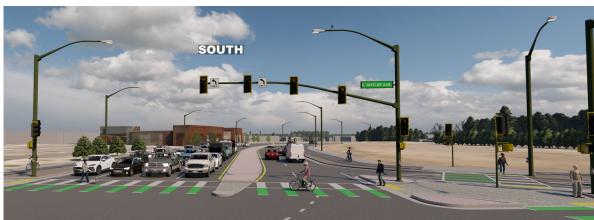
• Raised median (S, W)

2

LTO & Butler – Full Build-Out Intersection | Looking NE (2)

Facing West | EB Approach

Facing East | WB Approach


Walking Speed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
2.4 mph	East Leg	69	19.8	3.8
Riding Speed 12.4 mph	West Leg	70	20.0	3.8

Refuge Island only on Eastbound Approach. Protected Cyclist Crossing.

Facing North | SB Approach

Facing South | NB Approach

Walking Speed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
2.4 mph	North Leg	86	24.6	4.7
Riding Speed 12.4 mph	South Leg	83	23.8	4.6

Refuge Island only on Northbound Approach. Cyclist Crossing on roadway or with pedestrians.

Design Feature

- » Pedestrian longest crossing distance 86 ft
- » Pedestrian longest crossing time 26.4 s
- » Bike longest crossing time 4.7 s
- » Available Green Time 32.1s (EB/WB Thru-AM) * Not including distance/time to channelization island

Pedestrian crossing times are based on 3.5 ft/s | 2.4 mph

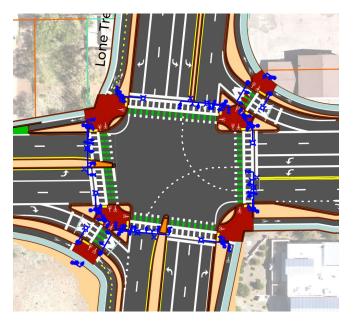
- » Per the Manual for Uniform Traffic Control
- » Assumes complete crossing during one single green phase
- » Older Pedestrians, 2.8 ft/sec.(FHWA) Longest Crossing time 30.7 sec
- https://view.mylumion.com/?p=wo9hasekuwi9j76n

Ped /Bike Crossing	Distance (ft)	Ped Time (sec)	Min. Bike Time (sec)
North Leg*	86	24.6	4.7
South Leg*	83	23.8	4.6
East Leg*	69	19.8	3.8
West Leg*	70	20.0	3.8

- » Overall Level of Service D
- » Average Vehicle Delay: 47.8 sec
- » Queuing: Longest queue 526 ft

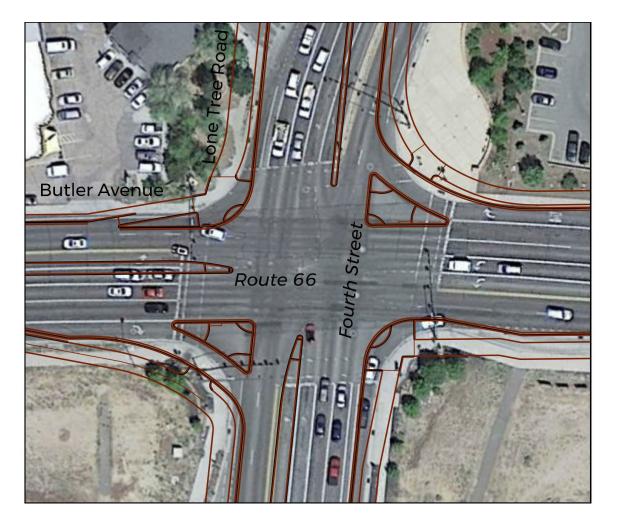
Performance (2040 PM Peak)

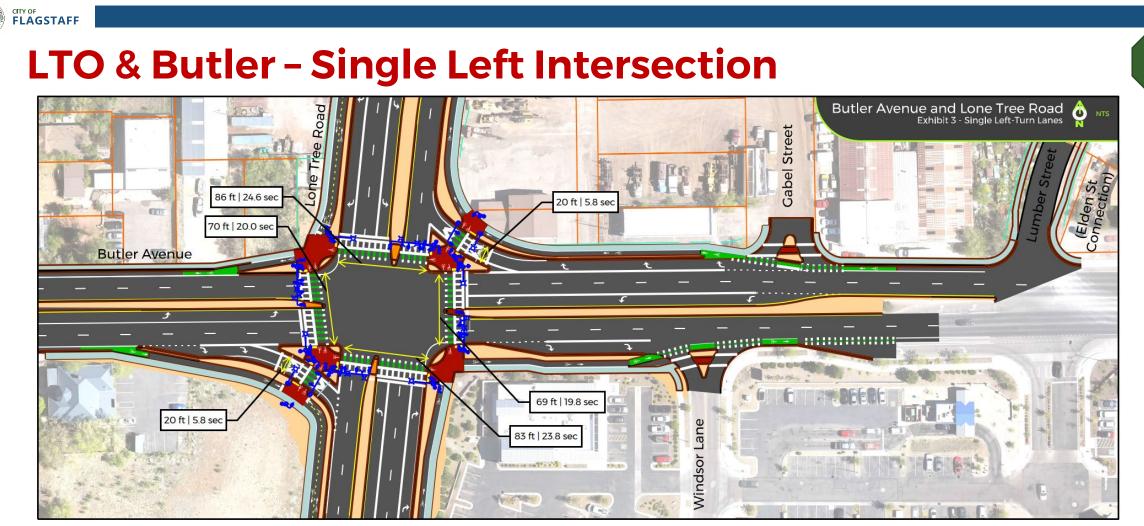
- » Overall Level of Service E
- » Average Vehicle Delay: 70.7 sec
- » Queuing: Longest queue 800 ft


Year	Total Vehicle Delay (hours)	Fuel Used (gallons)
2026 (PM)	59	58.2
2040 (PM)	111	74.7

2

» Maximum Queues - 2026




Queues are similar to the Traditional intersection

- Comparison to Existing Intersection: Rte 66 & Fourth Street
 - » Smaller roadway footprint
 - » Shorter crossing distances
 - » LTO & Butler has median refuge on West and South approaches
 - » LTO & Butler has (2) Right Turn Channelized Islands to further reduce crossing distances

Vehicle Features

- Single left-turn lanes (NB,SB, EB,WB)
- Channelized right-turn lanes (SW, NE)

Bicycle Features

• Separated bike lanes (LTO)

and Butler at the intersection

Pedestrian Features

• Raised median (N,S,E, W)

3

LTO & Butler - Single Left Intersection | Looking NE

Facing West EB Approach		Facing Eas	st WB Appr	oach	
	Walking Speed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
	2.4 mph	East Leg	69	19.8	3.8
	Riding Speed 12.4 mph	West Leg	70	20.0	3.8
	· ·	Refuge Island Protected Cycl			roach.

Facing North | SB Approach

Facing South | NB Approach

Walking Speed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
Walking Speed 2.4 mph	North Leg	86	24.6	4.7
Riding Speed	South Leg	83	23.8	4.6
12.4 mph				

Refuge Island only on Northbound Approach. Cyclist Crossing on roadway or with pedestrians.

Design Feature

CITY OF FLAGSTAFF

- » Pedestrian longest crossing distance 86 ft
- » Pedestrian longest crossing time 24.6 s
- » Bike longest crossing time 4.7 s
- » Available Green Time 32.1s (EB/WB Thru-AM)

Ped /Bike Crossing	Distance (ft)	Ped Time (sec)	Min. Bike Time (sec)
North Leg*	86	24.6	4.7
South Leg*	83	23.8	4.6
East Leg*	69	19.8	3.8
West Leg*	70	20.0	3.8

* Not including distance/time to channelization island

\diamond Pedestrian crossing times are based on 3.5 ft/s | 2.4 mph

- » Per the Manual for Uniform Traffic Control
- » Assumes complete crossing during one single green phase
- » Older Pedestrians, 2.8 ft/sec.(FHWA) Longest Crossing time 30.7 sec

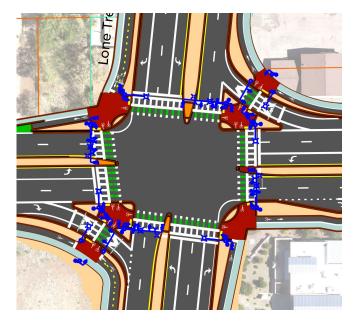
https://view.mylumion.com/?p=wo9hasekuwi9j76n

Performance (2026 PM Peak)

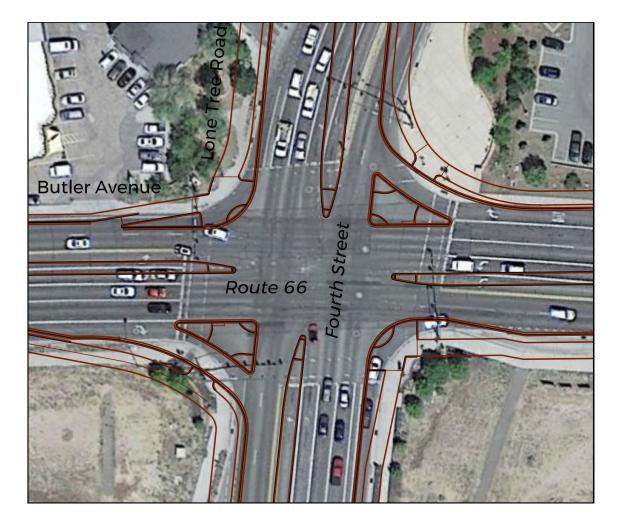
- » Overall Level of Service E
- » Average Vehicle Delay: 73.9
- » Queuing: Longest queue 1,971 ft

Performance (2040 PM Peak)

- » Overall Level of Service F
- » Average Vehicle Delay: 135.7
- » Queuing: Longest queue 2,041 ft

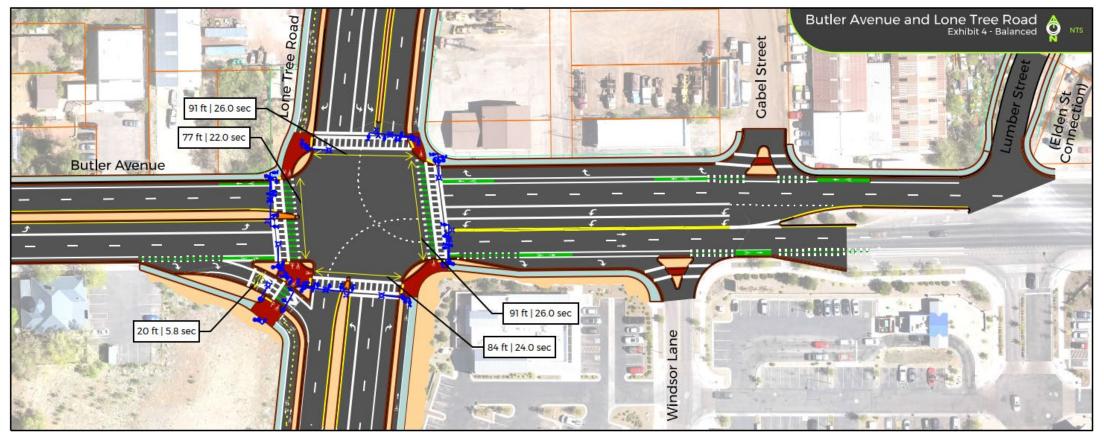

Year	Total Vehicle Delay (hours)	Total Emissions (gallons)
2026 (PM)	92	91.8
2040 (PM)	213	139.9

» Maximum Queues - 2026



Queues extend back:

- North approach to Rte 66
- South approach past Franklin Ave
- East approach nearly to Beaver St



- Comparison to Existing Intersection: Rte 66 & Fourth Street
 - » Similar to Full Build-Out
 - » Smaller roadway footprint
 - » Shorter crossing distances
 - » LTO & Butler has median refuges on North, South, East and West approaches
 - » LTO & Butler has (2) Right Turn Channelized Islands to further reduce crossing distances

Vehicle Features

- Single left-turn lanes (NB, EB)
- Channelized right-turn lanes (SW)

Bicycle Features

Pedestrian Features

- Separated bike lanes (LTO)
- Raised median (S, W)

LTO & Butler - Balanced Intersection | Looking NE

Facing West | EB Approach

Facing East | WB Approach

Walking Speed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
2.4 mph	East Leg	91	26.0	5.0
Riding Speed 12.4 mph	West Leg	77	22.0	4.2

Refuge Island only on Eastbound Approach. Protected Cyclist Crossing.

Facing North | SB Approach

Facing South | NB Approach

Walking Speed	Pedestrian / Cyclist Crossing	Distance (ft)	Walking Time (sec)	Riding Time (sec)
2.4 mph	North Leg	91	26.0	5.0
Riding Speed 12.4 mph	South Leg	84	24.0	4.6

Refuge Island only on Northbound Approach. Cyclist Crossing on roadway or with pedestrians.

Design Feature

- » Pedestrian longest crossing distance 91 ft
- » Pedestrian longest crossing time 26.0 s
- » Bike longest crossing time 5.0 s
- » Available Green Time 32.1s (EB/WB Thru-PM)

Ped /Bike Crossing	Distance (ft)	Ped Time (sec)	Min. Bike Time (sec)
North Leg	91	26.0	5.0
South Leg*	84	24.0	4.6
East Leg	91	26.0	5.0
West Leg*	77	22.0	4.2

* Not including distance/time to channelization island

Pedestrian crossing times are based on 3.5 ft/s | 2.4 mph

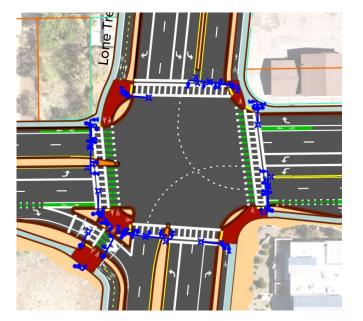
- » Per the Manual for Uniform Traffic Control
- » Assumes complete crossing during one single green phase
- » Older Pedestrians, 2.8 ft/sec.(FHWA) Longest Crossing time 32.5 sec
- https://view.mylumion.com/?p=a6f9737rtzjabsq5

Performance (2026 PM Peak)

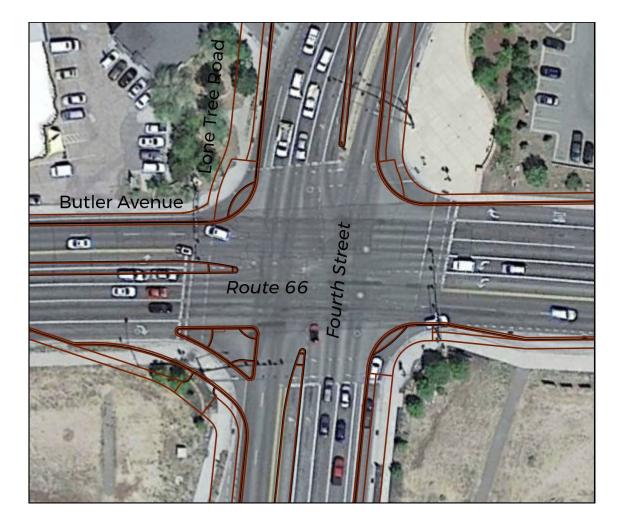
- » Overall Level of Service D
- » Average Vehicle Delay: 47.0 s
- » Queuing: Longest queue 481 ft

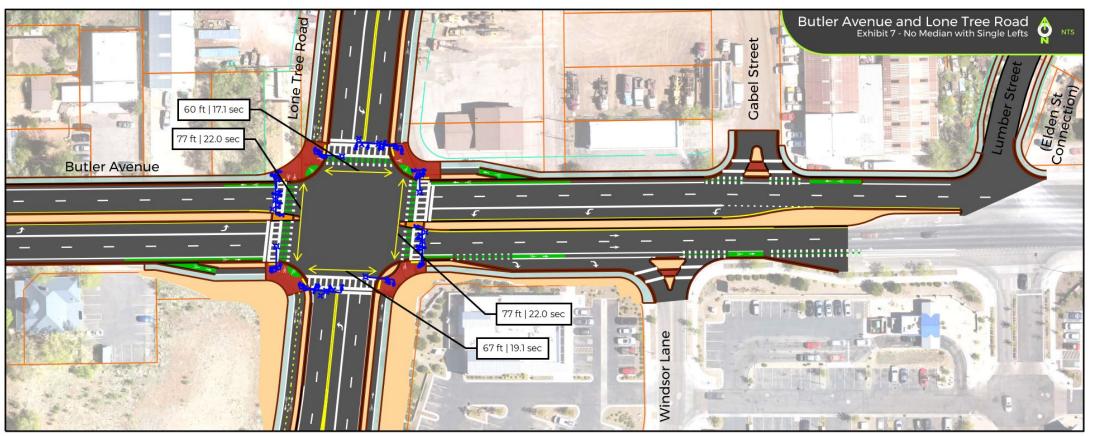
Performance (2040 PM Peak)

- » Overall Level of Service E
- » Average Vehicle Delay: 70.2
- » Queuing: Longest queue 1,225 ft


Year	Total Vehicle Delay (hours)	Total Emissions (gallons)
2026 (PM)	59	56.3
2040 (PM)	110	78.1

» Maximum Queues - 2026


Queues are similar to the Traditional and Full Build-Out intersections



Comparison to Existing Intersection: Rte 66 & Fourth Street

- » Smaller roadway footprint
- » Shorter crossing distances
- » LTO & Butler has refuge median on West and South approaches
- » LTO & Butler has (1) Right Turn Channelized Islands to further reduce crossing distances

Vehicle Features

- Single left-turn lanes (All)
- Shared Through/Rights (All)

Bicycle Features

Pedestrian Features

- Separated bike lanes (LTO)
- Raised median (E, W)

5

Design Feature

- » Pedestrian longest crossing distance 77 ft
- » Pedestrian longest crossing time 22.0 s
- » Bike longest crossing time 4.1 s
- » Available Green Time 45.2s (EB/WB Thru-PM)

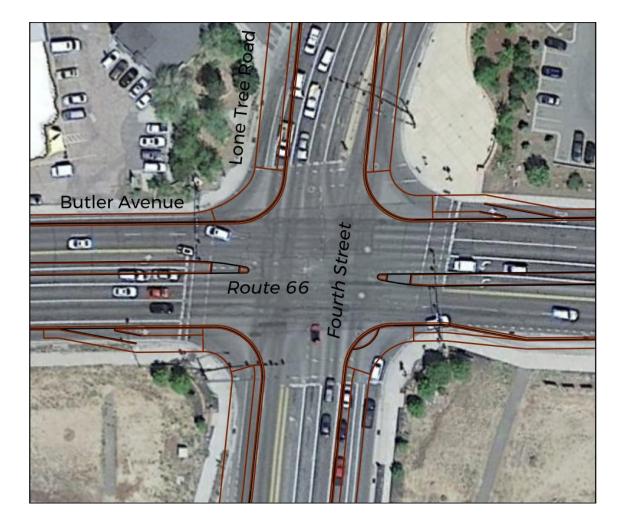
Pedestrian crossing times are based on 3.5 ft/s | 2.4 mph

- » Per the Manual for Uniform Traffic Control
- » Assumes complete crossing during one single green phase
- » Slower Pedestrians, 2.8 ft/sec.(FHWA) Longest Crossing time 27.5 sec
- https://view.mylumion.com/?p=a6f9737rtzjabsq5

Ped /Bike Crossing	Distance (ft)	Ped Time (sec)	Min. Bike Time (sec)
North Leg	60	17.2	3.3
South Leg	67	19.1	3.7
East Leg	77	22.0	4.2
West Leg	77	22.0	4.2

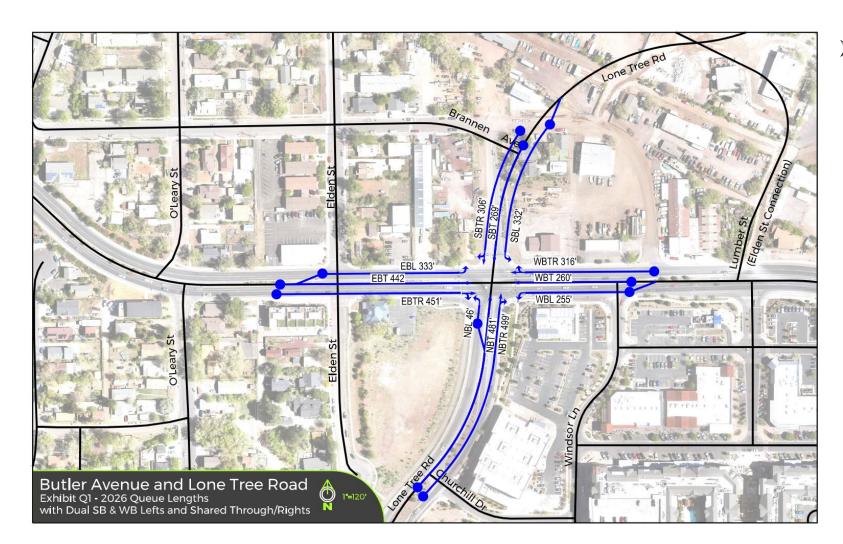
Performance (2026 PM Peak)

- » Overall Level of Service F
- » Average Vehicle Delay: 117.4 s
- » Queuing: Longest queue 1822 ft


Year	Total Vehicle Delay (hours)	Total Emissions (gallons)	
2026 (PM)	145.5	100.3	

Comparison to Existing Intersection: Rte 66 & Fourth Street

- » Smallest roadway footprint
- » Shortest crossing distances
- » Butler has refuge median on East and West approaches
- » Shared Through and Right Turns to reduce crossing distances



- Eastbound queues extend back past San Francisco St
- Southbound queues extend onto Route 66
- Northbound queues extend back past Franklin Ave

SIMILAR CONCEPT BUT WITH DOUBLE SB AND WB DOUBLE LEFTS

Approach to Safety - Bicycle Features

On-Street Bicycle Lanes

- Most common bicycle facility in use in the US.
- Creates separation between bicyclists and automobiles.
- Increases predictability of user positioning and interaction.

Separated Bicycle Paths

Separated bicycle lanes may provide further safety benefits. FHWA is anticipating completion of research in Fall 2022.

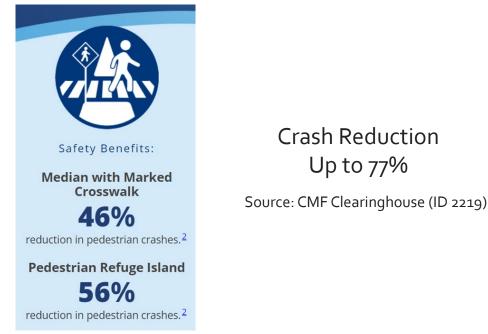
Source: FHWA Office of Safety

Further Crash Reduction Up to 25%

Source: CMF Clearinghouse (ID 9250)

- Fully separates bicycles users from vehicular roadway.
- ATMP provides corridors for vertical and horizontal separated bicycle facilities
 - Lone Tree Road and Butler Avenue are to be vertical separated facilities in the project area

Source: NACTO



Crash Reduction

Up to 77%

Raised Median (Refuge Area)

CITY OF FLAGSTAFF

Source: FHWA Office of Safety

- Provide a refuge for pedestrians, particularly those who are ٠ wheelchair-bound, elderly, or otherwise unable to completely cross an intersection within the provided signal time.
- Streets with raised medians, in both CBD and suburban areas, have lower pedestrian crash rates.

Leading Pedestrian Interval

Source: FHWA Office of Safety

- Enhance the visibility of pedestrians in the intersection and reinforce their right-of-way over turning vehicles.
- Reduce pedestrian-vehicle collisions as much as 60% at treated intersections

Source: NACTO

High Visibility Crosswalk

CITY OF FLAGSTAFF

Crosswalk A is a traditional parallel line crosswalk.

Crosswalk B is high-visibility crosswalk with a ladder design.

Source: saferoutesinfo.org

Safety Benefits:

High-visibility crosswalks can reduce pedestrian injury crashes up to

Source: FHWA Office of Safety

Crash Reduction Up to 19%-40% Source: CMF Clearinghouse (ID 4123-4124)

• High visibility crosswalks are visible from farther away compared to traditional crosswalks.

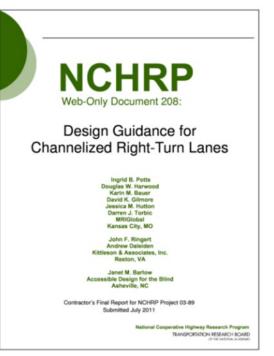
Colored Bike Lane at Signalized Intersection

Source: FHWA Bikeway Selection Guide

- Installation across turning conflict areas such as vehicle right turn lanes.
- Motorists increase yielding after colored lane treatment was installed.
 Source: NACTO

Approach to Safety - Turn Lane Features

Dual Left-Turn Lanes


CITY OF FLAGSTAFF

- Appropriate for high left-turn volumes that cannot be adequately served in a single lane.
- Protected-only left-turn phasing is used for most double-lane movements.
- Dual left-turn lanes with protected-only phasing generally operate with minimal negative safety impacts. Source: FHWA Signalized Intersection Guide

Channelized Right Turn

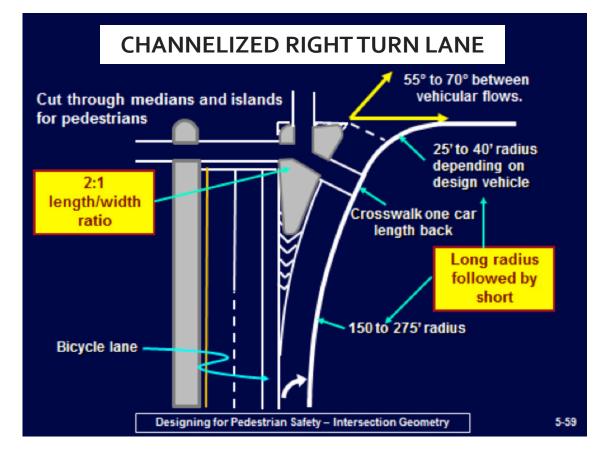
- Vehicular crash *prediction* for channelized right turn lane was slightly lower than traditional right-turn lanes but not statistically significant.
- Pedestrian crash prediction
 for channelized right turn
 lane was approximately 70
 to 80 percent lower than
 traditional right-turn lanes.
- Pedestrians did not appear to have any difficulty crossing channelized rightturn lanes.

Crash Reduction Up to 2% - 19%

Source: CMF Clearinghouse (IDs 282, 283, 284)

Source: NCHRP Design Guidance for Channelized Right-turn Lanes

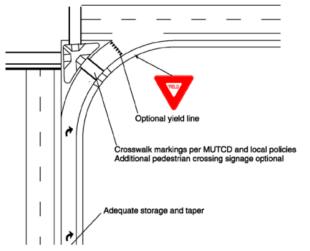
Intersection Alternatives - Channelized Right Lanes


\diamond Pedestrian Benefits:

CITY OF FLAGSTAFF

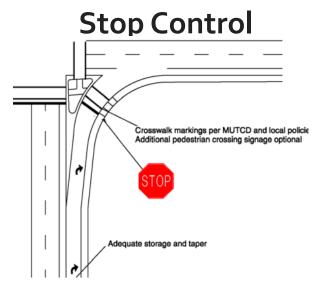
- » Reduces distance for crossing main road
- » Geometric Design limits vehicle speeds
 - Not a Free-Flow Turn Lane
- » Optimizes driver sight line to crosswalk

\diamond Pedestrian Challenges:


» Difficulty for visually impaired to detect oncoming traffic

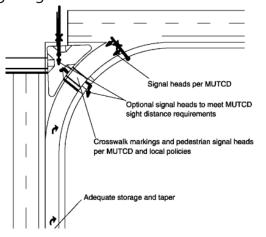
Source: FHWA PEDSAFE Pedestrian Safety Guide and Countermeasure Selection System

Intersection Alternatives - Dedicated Right Lanes


Yield Control

Pros: Minimal delay for pedestrians and vehicles.

CITY OF FLAGSTAFF


Cons: Challenging for visually impaired Need for additional ped warning signs.

Pros: Vehicles to stop, rather than yield at crosswalk.

Cons: Vehicles potentially stop twice and queues backing across crosswalk.

Signalized (High Right Turn Volume and Ped Volume)

Pros: Provisions for visually impaired. Signals to stop vehicles at crossing.

Cons: Pedestrians likely to cross against signal if there are delays to the ped call.

Recommendation for either Yield Control or Signalized Control for Channelized Right Turn Lanes at LTO & Butler

Source: NCHRP Design Guidance for Channelized Right Turn Lanes 2014

Example in Action – Boulder, Colorado

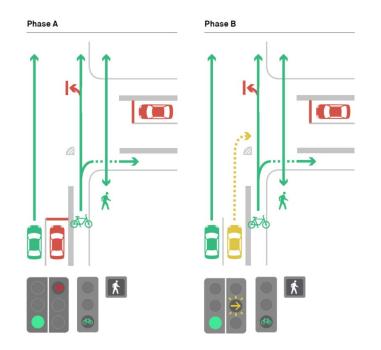
\diamond Boulder, Colorado

- » Standard Practice Yield Control
- » Can use Raised Crossings to further control speeds

Other Safety Features

Advanced Signals

CITY OF FLAGSTAFF


Increases understanding / signalization to multi-modal crossers **Extended** Crossing

Extends time for slower crossers

Additional guidance for users of intersection

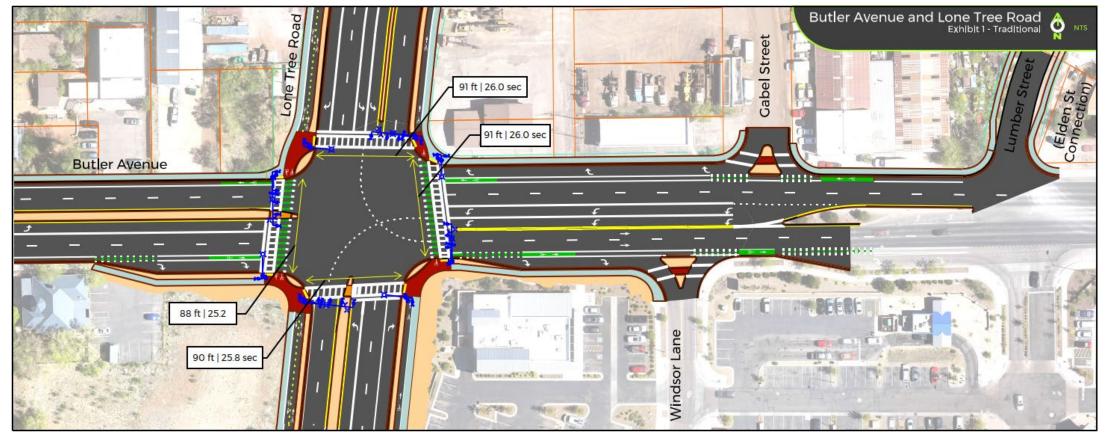
Leading Ped Phase with Right Turn Lane

Allows peds/bikes to have a protected phase

Intersection Alternatives - Takeaways

CITY OF FLAGSTAFF

- All intersection alternatives have sufficient green time to allow pedestrians to cross in one cycle
- Intersection footprints are all smaller than the comparable 4th and Route 66 intersection in Flagstaff (and Ponderosa with Butler and Route 66)
- All intersection alternatives have protected pedestrian/cyclist crossings along Lone Tree Road / FUTS across Butler Avenue
- Channelized right islands and refuge islands decrease crossing distances
 for pedestrians and improve safety
- Stop or yield control at channelized right could allow pedestrians to cross to island independent of traffic signal
- There is significant increase in vehicle delays and queue lengths in single left intersection alternative


LTO & Butler - Intersection Summary

Evaluation Criteria	Typical	1	Full Build-Out	3 Single Left-Turn Lanes	Balanced 4	Traditional 5
Protected/Separated Bicycle Facili	ties N/S Legs		All Legs	All Legs	N/S Legs	N/S Legs
Pedestrian Crossing Length/Tim	e 26.0 s		24.6 s*	24.6 s*	26.0 s	21.55
Total Fuel Used (Gallons/Hr) (202	6) 57.0		58.2	91.8	56.3	100.3
Vehicle User Delays (2026)	46.9 s	\bigcirc	47.8 s	73.9 s	47.0 s	117.4 S
ROW Impacts	None		SW/NE/NW	SW/NE/NW	SW	None
Construction Cost**	\$1,800,000		\$2,100,000**	\$2,100,000**	\$1,900,000** 🕕	Sim to Alt 1
Legend: ● 5 - Great ● 4 - Good ● 3 - Average ● 2 - Below Ave		2		4	5	
🔾 1 - Poor	Finan in franc channeli-	مطانعا و		** Deee not include add	tional violation for a state	_

* Time is from channelized island to opposite curb ** Does not include additional right-of-way costs

LTO & Butler - Typical Approach

Vehicle Features


• Two left-turn lanes (SB, WB)

Bicycle Features

Pedestrian Features

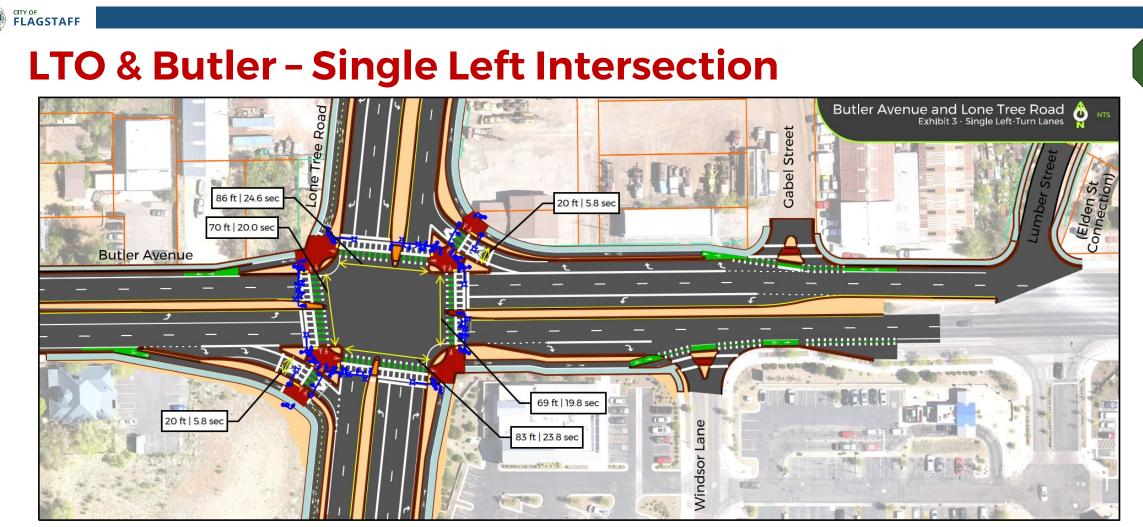
- Separated bike lanes (LTO)
- Raised median (S, W)

• Channelized right-turn lanes (None)

Vehicle Features

- Two left-turn lanes (SB, WB)
- Channelized right-turn lanes (SW, NE)

Bicycle Features


• Separated bike lanes (LTO)

and Butler at the intersection

Pedestrian Features

• Raised median (S, W)

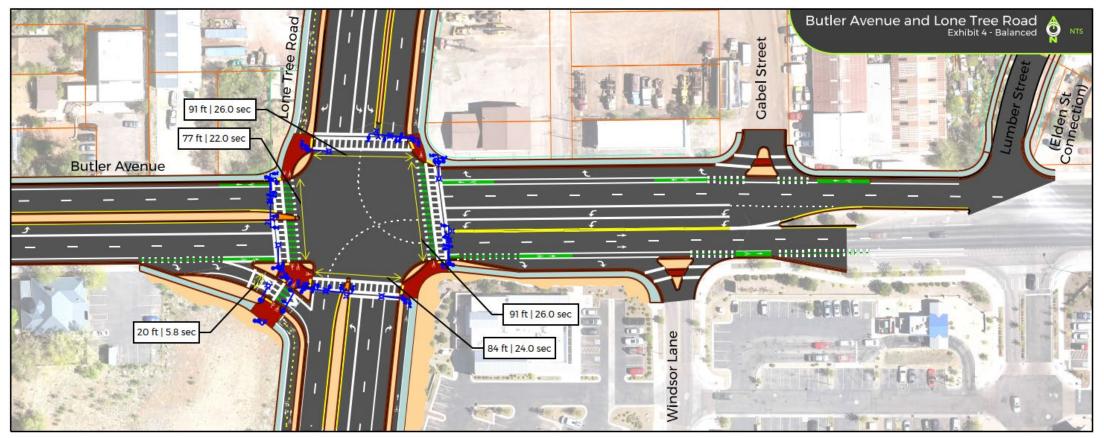
2

Vehicle Features

- Single left-turn lanes (NB,SB, EB,WB)
- Channelized right-turn lanes (SW, NE)

Bicycle Features

• Separated bike lanes (LTO)

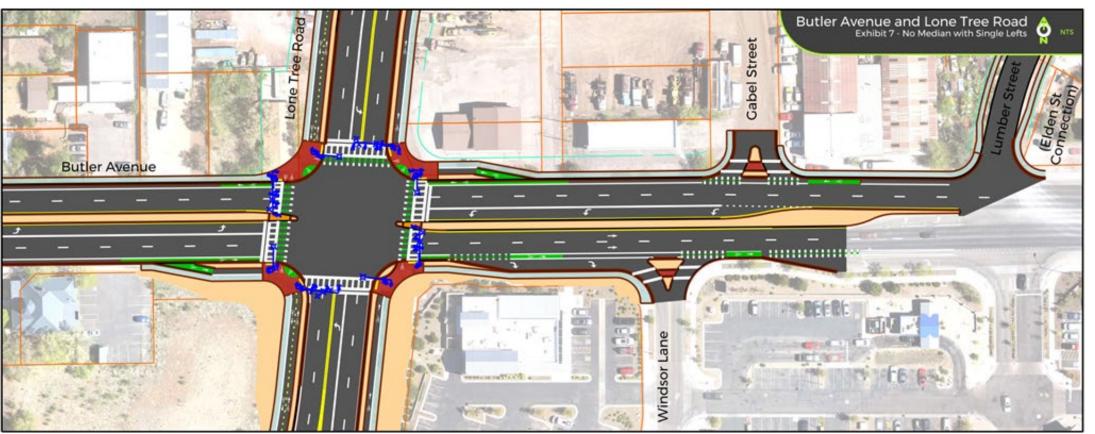

and Butler at the intersection

Pedestrian Features

• Raised median (N,S,E, W)

3

Vehicle Features


- Single left-turn lanes (NB, EB)
- Channelized right-turn lanes (SW)

Bicycle Features

Pedestrian Features

- Separated bike lanes (LTO)
- Raised median (S, W)

Vehicle Features

- Single left-turn lanes (All)
- Shared Through/Rights (All)

Bicycle Features

• Separated bike lanes (LTO)

Pedestrian Features

• Raised median (E, W)

5